

Bachelor in Physics (Academic Year 2025-26)

Quantum Mechanics			Code	800509	Yea	ar	3°	S	em.	2°
Module	Fundamental Physics	Торіс	Ot Fundai	oligatory in mental Phys	gatory in ental Physics Character		er	Opt	ional	

	Total	Theory	Exercises
ECTS Credits	6	4	2
Semester hours	45	30	15

Learning Objectives (according to the Degree's Verification Document)

- To assimilate the concept of quantum state and to introduce the quantum information theory.
- To understand the scattering theory in quantum mechanics
- To learn the theory of symmetry in quantum mechanics
- To apply time-dependent perturbation methods in quantum mechanics.

Brief description of contents

Pure and mixed states; discrete and continuous symmetries, rotations and angular momentum; composite systems; quantum information and quantum computation; time-dependent perturbation theory; scattering theory.

Prerequisites

Linear algebra, vector calculus, the content of the subjects Quantum Physics I and II.

Coordinator		Felipe J. Llanes Estra	Dept.	FT	
	Office	03.307.0	e-mail	flla	nes@fis.u

Theory/Exercises – Schedule and Teaching Staff								
Group	Lecture Room	Day	Time	Professor	Period/ Hour Dates s T/E		Dept.	
в	3	Мо	9:00-10:30	José Ramón Peláez Sagredo	Eull torm	39	T/E	ст
D	11 We 10:30-12:00	Alba Reyes Torrecilla		6	Е			

T: Theory, E: Exercises

Office hours							
Group	Professor	Schedule	E-mail	Location			
в	José Ramón Peláez Sagredo	1er. sem L, X: 15:30-18:30 2 sem M, J: 15:30-18:30	jrpelaez@fis.ucm.es	02.319.0			
	Alba Reyes Torrecilla	M: 15:00 - 17:00	albrey01@ucm.es	03.304.0			

Syllabus

Quantum Mechanics formalism

Pure and mixed states. Formulation of Quantum Mechanics for mixed states. Measurements and observables. Time-evolution and its pictures. Constants of the motion.

Symmetries in Quantum Mechanics.

Symmetry transformations. Continuous and discrete symmetries. Conservation laws. Space translations. Rotations. Parity and time-reversal. Exchange symmetry of identical particles. Internal symmetries.

Time-Dependent Perturbations.

Perturbative expansion of transition amplitudes. Transitions to a continuum spectrum: Fermi's golden rule. Sudden and adiabatic approximations.

Non-Relativistic Scattering Theory.

Differential and total cross sections. Scattering amplitude. Born approximation. Scattering by a central potential. Partial-wave expansion and phase shifts. Resonances.

Introduction to Quantum Information.

Von Neumann entropy. Bipartite systems, qubits and entangled pure states. Bell inequalities. Notions of quantum computation.

Bibliography

(Alphabetized)

Basic:

• G. Auletta, M. Fortunato, G. Parisi, Quantum Mechanics, Cambridge University Press.

- L.E. Ballentine, Quantum Mechanics: A Modern Development, World Scientific.
- G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information -

Vol.1: Basic Concepts, World Scientific.

• C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics Vol. I & II. John Wiley & Sons.

• L. Landau, E.M. Lifshitz, Quantum Mechanics, Buttenworth-Heinemann.• L.I. Schiff, Quantum Mechanics, McGraw-Hill.

• A. Galindo, P. Pascual, Mecánica Cuántica Vol. I y II. Eudema Universidad.

- J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley.
- R. Shankar, Principles of Quantum Mechanics, Plenum Press.• D.J. Griffiths, Introduction to quantum mechanics, Prentice Hall.
- J. R. Taylor, Scattering Theory, Dover

Complementary:

• J. Audretsch, Entangled Systems, Wiley-VCH.

- J.L. Basdevant and J. Dalibard Quantum mechanics, Springer.
- E. d'Emilio, L.E. Picasso, Problems in Quantum Mechanics: with solutions. Springer.
- K.T. Hecht, Quantum Mechanics, Springer.
- M. Le Bellac, Quantum Physics, Cambridge University Press.
- E. Merzbacher, Quantum Mechanics, John Wiley.
- A. Messiah, Quantum Mechanics, Dover.
- L. E. Picasso, Lectures in Quantum Mechanics: A Two-Term Course. Springer.
- F. Schwabl, Quantum Mechanics, Springer.

Online Resources

Problem assignments and other materials will preferably be distributed through the course's online campus.

Free access textbook: <u>https://phys.libretexts.org/Bookshelves/Quantum_Mechanics</u>

Methodology

There will be lectures on the blackboard, explaining and discussing the topics of the subject. The concepts and techniques introduced in this explanation will be illustrated with examples and problems that will be solved in class. Discussion on all the concepts and techniques introduced in class will be stimulated, individually and in groups, with the students.

Evaluation Criteria							
Exams	Weight:	70%					
There will be a final exam consisting of one part of theoretical-practical questions and/or another part of problems of a similar level of difficulty to those solved in class.							
Other Activities Weight:							
Written assignments during the class hours and/or continuous assessment activities outside it, consisting in short or test questions and/or the fulfillment of theoretical, practical and/or computational exercises.							
Final Mark							
The final mark will be given by max{0.7(exam mark) + 0.3 (other activities mark), exam mark} on a 0-10 scale.							
A minimum grade of 4 out of 10 on the exam will be required to pass the course.							

The mark of the extraordinary call of June-July will be obtained following the same evaluation procedure.